
 PARSING CONTEXT-FREE GRAMMARS FOR MUSIC:
A COMPUTATIONAL MODEL OF SCHENKERIAN ANALYSIS

Panayotis Mavromatis
New York University

Matthew Brown
Eastman School of Music

ABSTRACT

We outline a formalization and computer implementation of Schenker’s theory of tonality.  The theory of Context-Free Grammars
and their parsing, which has been developed extensively by computer scientists and computational linguists, offers a natural 
framework to address our problem.  We show how Schenker’s prototypes and transformations can be cast in the form of a Context-
Free Grammar.  This allows us to implement for the first time a parsing algorithm that automates the analytical process.  We 
develop a computer program using Prolog’s Definite Clause Grammar formalism.  The program parses a piece presented in a 
suitable encoded form, producing a tree that represents a Schenkerian analysis of that piece.  If more than one syntactically correct 
parsing is possible, the program produces corresponding analyses in separate trees.  We discuss our work’s implications for 
music theory and music psychology.

BACKGROUND AND AIMS

For over twenty five years, music theorists have been trying to implement Schenkerian theory and analysis on the computer; 
Kassler,1 Smoliar,2 Snell,3 and others, have written programs based on Schenkerian principles.  And with good reason.  By 
explaining tonal relations in terms of prototypes and transformations, Schenker’s work is particularly well suited to 
implementation on the machine.  In return, implementation on the computer allows music theorists to check the consistency and 
completeness of the theory, as well as to track the enormous number of transformations required to generate complex tonal 
surfaces.

Remarkable though they may be, the programs devised by Kassler, Smoliar, and Snell leave many complex but important issues 
open.  For one thing, they either model portions of Schenker’s original theory, or they adapt it in significant ways.  For another, 
although they offer the data structures required to represent the theory’s prototypes and transformations, they do not provide 
algorithms that implement the analytical process; the parsing of a tonal piece to produce a Schenkerian derivation is left to the 
user.

Given the formal similarity of Schenker’s system to phrase structure grammar,4 it is perhaps surprising that Kassler, Smoliar, and 
Snell did not take advantage of existing formalisms developed in the fields of computational linguistics and the theory of formal 
languages.  This would have given them access to ready-made tools for addressing the complex issues posed by the theory in a 
way that an ad hoc computational framework cannot.

Advances in Schenkerian theory,5,6,7 and the music theory community’s expanding interest in more sophisticated computational 
techniques, have invited us to revisit the problem.  Our goal has been to cast Schenkerian theory in the form of a Context-Free
Grammar (CFG).  The theory of CFG’s and their parsing has been developed extensively by computer scientists and 
computational linguists.8,9,10  If we can produce an exact correspondence between Schenkerian transformations and the rewrite 
rules of a CFG, a number of computational frameworks become immediately available to us for implementing parsing algorithms 
that automate the analytical process.  These frameworks include Augmented Transition Networks, Definite Clause Grammars, and 
Chart Parsers.9,10

MAIN CONTRIBUTION

Perhaps the most important attempt to make an explicit connection between Schenker’s transformations and context-free rewrite 
rules was offered by Keiler.11,12  A more careful examination, however, reveals that Keiler’s simple scheme runs into a number of 
problems:

• Problem 1  Some Schenkerian transformations (e.g., deletion and displacement) do not involve rewriting a simple entity 
into many, and hence cannot be represented by context-free rewrite rules.

• Problem 2  Those transformations that can (e.g., arpeggiation and linear progression) aren’t manifestly context-
free—their applicability is often limited by context, e.g., when parallel perfect fifths/octaves result from their application.



they cannot handle polyphonic configurations without some serious adjustment.

By addressing all three problems, we are able to demonstrate for the first time that Schenkerian theory is a context-free grammar.
The following paragraph outlines our argument.  Details will be provided in a future publication.

Putting aside for the moment Problem 1, we can avoid Problem 2 by moving from a note-based representation to an interval-
based one.  Individual Schenkerian transformations can then be combined into consonant polyphonic combinations that 
simultaneously apply to the same time span.  For instance, a chord can be expanded into a combination of linear and neighbor 
note patterns, each of them applying to the individual members of the chord.  It is such polyphonic clusters of transformations, 
rather than the individual transformations, that correspond to rewrite rules.  In Schenkerian theory, one member of the cluster is 
singled out as primary (e.g., a primary span), and can be used to identify/label the rewrite rule; the remaining members of the 
cluster provide consonant harmonization to the primary transformation.  In this light, Problem 1 can be solved by allowing 
transformations such as delete and displacement to be part of clusters; even though they can never be the primary transformations 
of the cluster, delete and displacement can act on the notes generated by the other members of the polyphonic combination, 
giving rise to modified rewrite rules.

As the implementation framework, we chose Prolog’s Definite Clause Grammar (DCG) formalism.  Prolog is a high level 
programming language that supports the declarative programming paradigm: a program is a direct representation of the 
knowledge needed to solve a problem in terms of objects and relations.  Procedures need not be explicitly coded, and the 
execution of the program is driven by Prolog’s built in engine.  DCG is a syntactic extension of Prolog that allows one to express 
directly a CFG as a set of rewrite rules.  Parsing DCG’s is built into the Prolog system, so the programmer need not specify the 
algorithm explicitly.  This allowed us to focus on the formal theoretical issues involved without worrying about the 
implementation details.  The program consisting of the DCG rules can parse a piece presented in a suitable encoded form, 
producing a tree that represents a Schenkerian analysis of that piece.  If more than one syntactically correct parsing is possible, 
the program produces corresponding analyses in separate trees.

IMPLICATIONS

We believe that our approach has led to a better understanding of theoretical issues in Schenkerian theory, most notably the 
relations among simultaneous transformations, the harmonize operation, and the status of deletion and displacement.  By 
producing a working computer system that performs analysis, we are introducing an important tool in the music theorist’s 
toolbox, a tool that provides a formal framework for formulating and testing extensions to Schenker’s theory, e.g., in the domain 
of rhythm, or in the realm of early and late tonality.  A computer tool may also make possible the analysis of large corpora in 
search of, e.g., stylistic traits.  Last, but not least, a formal model of Schenkerian theory allows us to address psychological issues, 
most notably the question of whether it can shed light on tonal compositional expertise.

TOPIC AREAS

Computational Models
Schenkerian Theory
Music Analysis

REFERENCES

1. Kassler, M. “Explication of the Middleground of Schenker’s Theory of Tonality.” Miscellanea Musicologica 9 (1977): 72-81.
2. Smoliar, S.  “A Computer Aid for Schenkerian Analysis.” Computer Music Journal 4 (1980): 41-59.
3. Snell, J.  “Design for a Formal System for Deriving Tonal Music.”  Master’s Thesis, SUNY Binghamton, 1979.
4. Chomsky, N. Aspects of the Theory of Syntax.  Cambridge, MA: M. I. T. Press, 1965.
5. Brown, M.  “A Rational Reconstruction of Schenkerian Theory.”  Ph.D. Thesis, Cornell University, 1989.
6. Brown, M.  “Rothstein’s Paradox and Neumeyer’s Fallacies.” Intégral 12 (1998): 95-132.
7. Brown, M. Explaining Tonality: A Schenkerian Perspective. Rochester, NY: University of Rochester Press, forthcoming.
8. Hopcroft, J. and Ullman, J. D. Introduction to Automata Theory, Languages and Computation.  Reading, MA: Addison-

Wesley, 1979.
9. Gazdar, G. and Mellish, C. Natural Language Processing in Prolog: An Introduction to Computational Linguistics.  Reading, 

MA: Addison-Wesley, 1989.
10. Allen, J. Natural Language Understanding.  2nd ed.  Redwood City, CA: Benjamin Cummings, 1995.
11. Keiler, A.  “The Syntax of Prolongation (Part I).” In Theory Only 3/5 (1976): 3-27.
12. Keiler, A.  “On Some Properties of Schenker’s Pitch Derivations.” Music Perception 1/2 (1984): 200-228.

• Problem 3  Since context-free grammars were originally conceived for languages that generate one-dimensional strings, 


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Panayotis Mavromatis
	------------------------------

	tlhs: 
	footerL1: ISBN 1-876346-50-7 © 2004 ICMPC
	pagenumber414: 414
	brhs: 
	headLa2: ICMPC8, Evanston, IL, USA
	headRa2: August 3-7, 2004
	pagenumber415: 415


