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Abstract. Hiden Markov Models (HMMs) have been successfully em-
ployed in the exploration and modeling of musical structure, with appli-
cations in Music Information Retrieval. This paper focuses on an aspect
of HMM training that remains relatively unexplored in musical applica-
tions, namely the determination of HMM topology. We demonstrate that
this complex problem can be effectively addressed through search over
model topology space, conducted by HMM state merging and/or split-
ting. Once successfully identified, the HMM topology that is optimal
with respect to a given data set can help identify hidden (latent) vari-
ables that are important in shaping the data set’s visible structure. These
variables are identified by suitable interpretation of the HMM states for
the selected topology. As an illustration, we present two case studies that
successfully tackle two classic problems in music computation, namely
(i) algorithmic statistical segmentation and (ii) meter induction from a
sequence of durational patterns.

1 Introduction

Hiden Markov Models have been successfully employed in the exploration and
modeling of musical structure [1,2], with applications in Music Information Re-
trieval [3].

Simply put, a Hidden Markov Model is a probabilistic version of a Finite
State Machine (FSM), or formal specification of a finite state grammar. A FSM
is formally defined by states and transitions, graphically represented by circles
and arrows respectively. A FSM generates a symbolic sequence by traversing a
path of states connected by transitions, following the direction of the arrows.
the generated sequence is the string of output symbols encountered in the path.
A FMS is a simple and flexible way to specify finite-memory constraints on
the symbolic values of variables that characterize musical structure (e.g., pitch,
duration, etc.) and as such offers useful formal characterizations of the structure
of musical sequences.
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A Hidden Markov Model (HMM) is a FSM with probabilities attached to its
transitions and output symbols [4,5]. The generation of a sequence through a
specific HMM path has probability equal to the product of all transition and
output probabilities encountered in traversing the generating path.

What gives the HMM technique its strength and flexibility is the fact that
selecting the best HMM for a given data set can be generally accomplished
through efficient algorithms. For instance, given a data set of symbolic sequences
whose structure we wish to explore, it is customary to assume a HMM of fixed
topology (i.e., number of states, and how they are connected by transitions) and
identify the model parameters (i.e., transition and output probabilities) that
best fit the data set, in the sense of Maximum Likelihood Estimation, using the
so-called Baum-Welch algorithm.

This paper focuses on an aspect of HMM training that remains relatively un-
explored in musical applications, namely the determination of HMM topology.
Our aim is to algorithmically construct models whose topologies consist of states
interpretable as values of latent (“hidden”) variables that may play important
role in the determination of musical structure. In a given application, one may
wish to focus on a particular (“visible”) musical variable, aiming to model syn-
tactical constraints on its successive values (e.g., stylistically acceptable patterns
of note durations). The states of a HMM obtained through topology-sensitive
search should indicate which additional variables must be taken into consider-
ation (e.g., metric position) in order to understand the syntax of the original
“visible” variable that one set out to model. This can be accomplished by show-
ing a close correspondence between HMM states and particular values of the
candidate “hidden” variables.

For an HMM topology to be interpretable in the manner suggested in the
preceding paragraph, special effort must be put in the topology selection algo-
rithm. If one simply relies on Baum-Welch optimization of the HMM parameters,
one will in most cases obtain HMMs whose states are not readily interpretable,
however well these models may fit the data. Previous studies that attempted to
address this complex problem have generally employed some form of search over
model topology space, which was conducted by HMM state merging [6] or split-
ting [7]. In this paper, we use the same basic search procedure, except that we
allow state merging and splitting to be combined in the same search. In addition,
we evaluate each candidate model using a Bayesian approach, in which a HMM’s
prior probability is determined through the Minimum Description Length prin-
ciple. This prior is optimal in that it leads to models that are neither too large
nor too small, and has been found to provide a reliable termination criterion for
the state merging/splitting search.

We will illustrate our method with the help of two case studies that success-
fully tackle two classic problems in music computation, namely (i) algorithmic
statistical segmentation and (ii) meter induction from a sequence of durational
patterns.
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2 HMM Training and Topology Identification

The proposed method of topology identification takes place in the framework of
Bayesian model selection. More specifically, given data set D, we seek the model
M that maximizes the probability P (M |D) of the model given the data. The
latter is obtained through Bayes’s Law as

P (M |D) =
P (D|M)P (M)

P (D)

It is customary to use the simpler form

P (M |D) ∝ P (D|M)P (M) (1)

since P (D) is constant over models M and therefore does not affect the maxi-
mization problem. P (M) is known as the model prior probability, assigned to the
model on general grounds before the data set is consulted. Likewise, P (M |D) is
known as the model posterior probability, and represents the probability of the
model after the data has been taken into consideration.

Topology identification is achieved through a suitable choice of model prior
P (M), defined as a function of model topology alone, and designed to reward
model simplicity. For a fixed topology, P (M) is fixed, and so maximization of
the model posterior amounts to maximizing the P (D|M) part in eq. (1). This
is achieved through the Baum-Welch (BW) algorithm, which chooses the model
parameters maximizing the probability of the data set using the Expectation-
Maximization principle. Overall, the maximization problem defined by eq. (1)
is a concrete implementation of Occam’s Razor, and achieves optimal balance
between goodness-of-fit and model simplicity.

We have shown elsewhere [8] that an optimal choice for P (M) is a model
complexity prior given by

P (M) = Ke−D(M) (2)

where the function D(M) is defined by

D(M) ≡ L(nS) + L(d) + nS log
(d + nS + 1)!

d!nS !
+ nT log

(d + nA + 1)!
d!nA!

(3)

and L(n) is the universal prior for integers [9, pp. 34–5], defined by

L(n − 1) = c + log(n) + log(log(n)) + log(log(log(n))) + . . . (4)

Here nS is the number of HMM states, nA is the number of distinct output
symbols in the data sequences, and K and c are suitably chosen normalization
constants. An additional integer d represents the decimal precision needed to
express the real-valued HMM model parameters. The expression in eq. (3) was
derived in [8] with the help of the Minimum Description Length principle [9,10].

The best way to tackle the problem of HMM topology selection is by system-
atizing the search over all possible HMM graphs. Such a search scheme typically
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begins with an extreme graph which is maximally simple or maximally complex.
Incremental improvements are subsequently performed on each candidate graph
by either (i) splitting one of its states, if the graph is too simple, or (ii) merging
two of its states if the graph is too complex. As an illustration, the following
procedure formalizes the state-splitting search:

1. Begin with a one-state HMM. This model has only one transition, namely the
one from the single state to itself. The output probabilities on that transition
can be determined by the BW algorithm.

2. For this and each subsequent candidate model,
(a) Choose a state to split. Determine the new graph that results from the

splitting.
(b) Perform BW estimation of the new graph’s parameters.
(c) Evaluate the resulting HMM’s posterior probability using eq. (1) with

the model complexity prior (eqs 2–4).
Continue Steps (a–c) until all the states have been tried for splitting. The
split-state HMM with the best posterior becomes the next candidate model,
and Step 2 is repeated for as long as the candidate models’ posterior prob-
ability continues to improve.

3. The process terminates once the posterior probability of the candidate model
begins to deteriorate, and the HMM with the highest overall posterior is
identified as the optimal HMM for the given data set.

One can modify Step 2(a) above to replace state-splitting by state-merging. Al-
ternatively, one can consider both possibilities at each step, choosing the option
that maximizes the model posterior at that step.

The above HMM topology selection process will now be illustrated with the
help of two case studies.

3 Case Study I: Statistical Segmentation of Symbolic
Sequences

Statistical segmentation is used to refer to the process of identifying grouping
boundaries in sequences based solely on the patterns of occurrences of symbol
combinations, without relying on explicit cues or annotations for such
boundaries.

The process can be illustrated with the help of a data set D1 based on a
language that was artificially synthesized to investigate statistical learning of
tone sequences by people in an experimental setting [11]. The set of symbols,
or alphabet, for this artificial language consists of pitches of the chromatic scale,
to be represented by the symbols {C, C�, D . . .B}. The data sequences of D1 are
built out of the following six three-symbol artificial segments (“words”):

A D B D F E G G� A F C F� D� E D C C� D

These words appear randomly with equal probability in the sequences of our
data set D1. (Word combinations were more restricted in Saffran’s stimuli, due



HMM Analysis of Musical Structure 209

Table 1. Calculation of model posteriors for all the HMMs considered in the word
segmentation example involving data set D1. Each model is obtained from the previous
one by state splitting. The first column shows the HMM’s number of states nS . The
second column shows the state split from which that model was obtained. Negative
logarithms of probability values are used throughout. The selected model maximizes
the model posterior or, equivalently, minimizes the value in Column 5. This model is
marked with an asterisk in Column 1.

nS State Split −log2P (D|M) −log2P (M) −log2P (M |D)

1 - 20365.8 84.2112 20450.1
2 0 15539.9 159.162 15699
3 0 13570.1 220.761 13790.9
4 1 12116.8 300.335 12417.2
5 3 11091.5 326.96 11418.4
6 2 10250.1 439.757 10689.8
7 0 9527.7 400.767 9928.47
8 1 8607.96 480.044 9088
9 4 7992.11 409.265 8401.38
10 7 7385.11 428.647 7813.76
11 6 6798.11 448.685 7246.8
12 5 6220.11 469.327 6689.44
13* 0 5653.91 624.18 6278.09
14 2 5653.91 670.633 6324.54

to the experimental design.) A typical sequence in D1 will therefore look like
this:

G G� A A D B D� E D A D B C C� D D F E (5)

The output of the segmentation will be the same sequence annotated with word
boundaries as follows:

G G� A / A D B / D� E D / A D B / C C� D / D F E

Our HMM analysis was applied to a data set D1 constructed in the above
manner, consisting of 200 randomly generated sequences with an average length
of 27.21 symbols. A state-splitting search was performed to identify the best
HMM topology. Each candidate split was followed by Baum-Welch estimation of
the HMM parameters. The results of this search are summarized in Table 1. The
model identified as the winner is the one that carries the maximum posterior
probability. This model is marked with an asterisk in the first column of the
table. The model’s graph structure is given in Figure 1.

To illustrate how the HMM of Figure 1 performs segmentation on a data
sequence, it is helpful to consider the most likely HMM path that generates the
sequence in question, also known as the sequence’s Viterbi path [4,5, pp. 331–3].
For the sequence of example (5), this path turns out to be the following:

BEGIN G G� A A D B D� E D
s0 → s1 → s2 → s3 → s1 → s8 → s9 → s1 → s12 → s4 → s1
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Fig. 1. The best HMM for data set D1, obtained through state-splitting

A D B C C� D D F E END
s1 → s8 → s9 → s1 → s11 → s4 → s1 → s7 → s6 → s1 → s0

(6)

With the help of this Viterbi path, all word boundaries in the sequence are clearly
identified through the HMM state s1. The significance of that state as a marker
of word boundaries can also be confirmed by observing the graph structure of
Figure 1 and following the derivation path of any sequence generated by that
graph.

This simple example serves to illustrate that, just like the experimental sub-
jects in the study by Saffran et al. [11], the HMM topology selection technique
presented here can exploit the statistical structure of symbolic sequences to seg-
ment them into grouping units. This result is replicated with other similar data
sets and suggests that—at least in certain cases—segmentation can be performed
on the basis of statistical information alone, without recourse to other structure,
such as Gestalt principles of grouping.

4 Case Study II: Meter Induction from Rhythmic
Patterns

Meter induction refers to the inference of metrical structure from a pattern
of note durations. Our second case study illustrates this process by analyzing
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patterns of durations found in Palestrina’s vocal music. Table 2 lists all the
possible note and rest durations employed in the style.

It should be noted that the goal of this application is not to do meter induction
per se. Rather, we seek to model Renaissance rhythm by establishing a syntax of
note durations. With the help of the HMM topology selection technique, we hope
to identify any other variable(s) that may be most relevant in constraining and
shaping the style’s duration patterns. In this instance, the most crucial variable
turns out to be metric placement, and is identified by the interpretation of HMM
states as explained below.

The HMM analysis of the present case study was performed on a sample of
melodies taken from the corpus of Palestrina’s masses. The corpus was obtained
from the Internet in Humdrum-encoded form.1 The sample was constructed as
follows:

1. The corpus of Palestrina masses was subdivided into movements, or sections
of movements. Each such section was further subdivided into individual vocal
lines. This processing was carried out using standard Humdrum tools. The
result was a database of 5034 vocal lines covering the entire corpus.

2. Out of these 5034 vocal lines, fifty were chosen at random to form the sample,
using a random number generator.

3. Each of the fifty lines was further subdivided into one or more data sequences.
The divisions were made at places where there was a rest of one complete bar
or longer. This subdivision was intended to ensure that the data sequences
represented units close to the phrase level.

4. Finally, the durations of each data sequence were extracted and encoded
using the symbols listed in the fourth column of Table 2.

An example of this encoding is shown above the staff in Figure 3. The resulting
sample consisted of 190 such sequences with an average length of 34.48 symbols.

The results of HMM inference algorithm are shown on Table 3. The HMM
with the highest posterior probability was a 6-state model, marked with an
asterisk in the first column of the table. Figure 2 shows the model in graph
form.

As in the previous case study, the model’s structure will be easier to interpret
with the help of the data sequences’ Viterbi path. As an illustration, the Viterbi
path for a typical melody in the data set is given in Figure 3.

Examination of the state sequences in the model’s Viterbi paths reveals one
striking property: there is a close correspondence between the HMM states and
the various metric positions in the compositions’ underlying 4/2 meter. As can
be seen from the example of Figure 3, states s1 and s3 occur exclusively on
strong beats (1 or 3), whereas state s2 only occurs on weak beats (2 or 4);
moreover, state s4 only occurs on weak quarters, and the rare occurrence of
state s5 coincides with a weak eighth-note subdivision. In other words, the HMM
appears to be “aware” of metric placement for each duration it generates. This

1 URL: http://csml.som.ohio-state.edu/HumdrumDatabases/classical/Renaissance/
Palestrina/Masses/ (last visited March 2009).
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Table 2. The note and rest durations available to the Renaissance vocal style. These are
shown along with the corresponding symbolic value of the duration variable, as encoded
for the HMM analysis of the present project. The rightmost column records the possible
metric placements for each duration, as prescribed in counterpoint instruction.

Music symbol Renaissance name Modern name Encoding Metric position

Longa L beats 1, 3

Breve B beats 1, 3

Semibreve Whole note W beats 1, 2, 3, 4

Minim Half note H beats 1, 2, 3, 4

Semiminim Quarter note Q any quarter

Fusa Eighth note E pairs, weak quarter

Dotted Longa L. beats 1, 3

Dotted Breve B. beats 1, 3

Dotted Semibreve Dotted whole note W. beats 1, 3

Dotted Minim Dotted half note H. beats 1, 2, 3, 4

Semibreve rest Whole note rest Rw beats 1, 3

Minim rest Half note rest Rh beats 1, 3

awareness is embodied in the HMM states, whose job is to encapsulate the
most decisive factors that determine the next output at each point in time. The
fact that each HMM state has chosen to incorporate metric information should
perhaps come as no surprise, given the generally acknowledged role of metric
constraints in the style’s rhythmic syntax. What is perhaps most remarkable is
that metric position was not originally encoded explicitly in the data sequences.
The HMM inference algorithm was able to detect the importance of this variable,
based on statistical regularities in the sequential combinations of note durations.
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Table 3. Calculation of model posteriors for all the HMMs considered in the analysis of
Palestrina rhythm. As in the earlier example, each model is obtained from the previous
one by state splitting. The columns of this table carry the same interpretation as those
of Table ??.

nS State Split −log2P (D|M) −log2P (M) −log2P (M |D)

3 - 14091.2 826.489 14917.7
3 0 14091.2 826.489 14917.7
4 1 12950.7 942.963 13893.7
5 0 12161.9 1051.110 13213.0
6* 4 12002.0 1204.640 13206.6
7 0 12002.0 1363.340 13365.3

Examination of the HMM states reveals a close correspondence between HMM
states and the rules of metric placement found in standard Renaissance coun-
terpoint textbooks [12,13], including the constraints on each duration’s metric
placement, and the general tendency to find longer note values near the begin-
nings and ends of phrases. The latter property is reflected in the differentiation
between the two “strong beat” states s1 and s3; the former represents strong
beats near the beginning and end of phrases, whereas the latter occurs in the
phrases’ interior positions.

5 Conclusions

The two case studies presented in this paper have demonstrated how topology-
sensitive HMM training can successfully uncover hidden structure underlying
the observable behavior of symbolic data sequences. Indeed, generic application
of the Baum-Welch algorithm would not have resulted in readily interpretable
graphs such as those of Figures 1 and 2. Only when HMM training incorporates
model topology identification, in a way that is sensitive to the data set’s statis-
tical regularities, will the HMM states be readily interpretable in terms of the
processes underlying the data sequence’s generation. In such cases, we can in-
terpret the different HMM states as representing the values of hidden, or latent,
variables that are most crucial in shaping the structural constraints of the data
sequences.

More specifically, one salient latent variable underlying Case Study I could be
identified as “word completion status” with the two values ‘yes’ (corresponding
to state s2) and ‘no’ (corresponding to states s1 s3, and s4); furthermore, a
second latent variable of “word label” could account for the differences among
the non-boundary states s1 s3, and s4. For Case Study II, the most salient latent
variable seemed to be “metric position” with most HMM states representing
distinct values. A second latent variable representing “position in the phrase”
was found to differentiate between states s1 and s3.

Of course, in both the above examples, identification of the relevant latent
variables is relatively straightforward. This is because the HMM graphs are
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rather small, and so the correspondence between HMM states and latent vari-
able values can be directly perceived. In more complicated situations, however,
this need not be the case. We must have a way of interpreting HMM states
that is more reliable than simple inspection. In general, the interpretation pro-
cess could be systematized by compiling contingency tables that show how each
HMM state aligns, or doesn’t align, with the values of a set of candidate latent
variables along the HMM paths that generate the data set (the Viterbi path
offering the dominant contribution).

Finally, it should be noted that, as our experiments with various data sets in-
dicate, our MDL prior of eq. (2–4) is an essential ingredient for the identification
of the right model topology. Other priors that we have tried typically produce
smaller graphs—e.g., caused by premature termination of state-splitting—whose
states are not consistently interpretable. In general, whenever the data is abun-
dant, it is found that the result is less sensitive to the choice of prior. However,
that choice really matters when data is scarce, which is the case, for example, in
historically delimited musical corpora (e.g. “all D-mode Gregorian tracts”). The
MDL approach is a strongly motivated and principled way of choosing a prior,
which in the majority of cases leads the topology search to discover interpretable
graphs.

It should be also noted that a simple splitting/merging search over model
topologies, unaided by other search heuristics, does not always yield readily
interpretable graphs, especially in data sequences with rich alphabets of symbols.
The problem is that the splitting/merging search is a form of “best first” search
that guarantees an optimal next step in the search, leading to a local maximum
of the model posterior; however, it cannot guarantee that the maximum reached
in this way will be optimal in the global sense. This is of course a concern for
any optimization problem. We have found that, in order to produce interpretable
results in the most general cases, the search proposed in this paper has to be
augmented with heuristics that determine an appropriate starting point for the
splitting or merging. This issue is currently under investigation, and will be
presented in a future work.
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